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Supplementary Note 1: Synthetic temporal lattices  

In this section, the mapping of the light pulses dynamics in two coupled fiber loops to the light 

propagation in a synthetic temporal lattice is discussed. The dynamics of two coupled fiber loops with 

different length mentioned in main text can be mapped onto the mesh lattice with time steps m and 

spatial positions n,46,48 as depicted in Fig. S1. The length difference between the long loop and short 

loop makes it possible to have a time delay when the pulses of the two paths interfere in the central 

optical coupler. Coupling the optical pulse sequence into one of the loops, after a period of evolution, 

there will be a pulse sequence in both loops, the pulse into the short loop is equivalent to the leftward 

propagation in the temporal mesh lattice (advance effect); the pulse into the long loop is equivalent to 

the rightward propagation in the temporal mesh lattice (delay effect). The above process is similar to 

discrete diffraction in a waveguide array, where the lateral spatial dimension corresponds to the 

evolution of the wave packet in the pulse sequence in the fiber loops; the vertical temporal dimension 

corresponds to the number of turns (number of loops) of the wave packet evolution in the fiber loops. 

In other words, the relative position of wave packets gives spatial indicators in the transverse 

dimension n. And each cycle is equivalent to one step of evolution in the figure below, using m as a 

marker. By adding intensity modulators and phase modulators into the loops, we can manipulate the 

light pulses in each node in mesh lattice. The effective electric field can be obtained by changing the 

parameters of phase modulators and the loss can be introduced into the mesh lattice by controlling the 

electric signal of intensity modulator in short loop. 

The experimental realization of synthetic temporal photonic lattice is constructed by utilizing a 

couple fiber-loop circuit, as depicted in Fig. S2. The fiber loops are connected by a variable optical 

coupler (VOC) with each having a length of ~5 km, which implies a circulation time of ~25 s for 

individual pulses. The loss caused by the passive optical devices can be compensated by the erbium-

doped fiber amplifiers (EDFAs). The length difference of the fiber loops is ~20 m and thus the adjacent 

pulses manifest a time interval of ~100 ns. The short loop includes a phase modulator which is used to 

yield a phase difference of 2(m) with that in the long loop. Therefore, a vector potential A = −(m) 

and a scalar potential (m) are generated in the temporal lattice. Note that the scalar potential has no 

effect on the evolution of wave packets. The arrangement produces exactly the same results as applying 

opposite phase modulations in the two loops. The incident pulse is converted to a Gaussian-like wave 

packet consisting of discrete pulses by using an intensity modulator (IM), which is driven by an 

arbitrary waveform generator (AWG). Each loop contains an IM to manipulate the loss rates of the 

system. By varying the voltage signals that drive the IM, the transmittance of IM can be reduced and 

the desired loss modulation is realized. In the aid of optical couplers, the pulses are exported into the 



3 
 

photodetectors which are connected with an oscilloscope. As the wave packet is injected into the fiber-

loop circuit, the temporal waveforms in the short and long loops for each roundtrip can be recorded in 

real time. 

 

Fig. S1. A part of the temporal mesh lattice. The propagation in the fiber loops (a) maps onto a mesh 

lattice (b) of optical couplers and modulators. The grey rectangles indicate optical couplers. The green 

circles represent the intensity modulators. The curved arrows denote the loss introduced into the mesh 

lattice.  

 
Fig. S2. Experimental setup. The gray lines indicate optical paths. The black lines represent the 

transmission of electric signals. PC, polarization controller; IM, intensity modulator; VOC, variable 

optical coupler; PD, photodiode; PBS, polarization beam splitter; SMF, single mode fiber; VOA, 

variable optical attenuator; WDM, wavelength division multiplexer; ISO, isolator; EDFA, erbium-

doped fiber amplifier; BPF, band-pass filter; PM, phase modulator; OC, optical coupler; AWG, 

arbitrary waveform generator.  
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Supplementary Note 2: Experimental setup and measurement method 

In this section, we shall derive the dispersion relation and eigenmodes of the dissipative synthetic 

temporal lattice. The propagation of the optical pulses in the fiber loops [Fig. S1(a)] can be mapped to 

a two-dimensional mesh lattice [Fig. S1(b)]. The time step and arriving time in a single loop are 

denoted by m and n, respectively, corresponding to the longitude and lateral dimensions in the mesh 

lattice. m
nu and m

nv  represent the pulse amplitudes of the nth pulse at the mth time step in the short and 

long loops respectively. As shown in Fig. S1(b), considering the coupling of amplitudes before and 

after the coupler, we have 

 1 1
1 1 1 1,     ,m m m m m m

n n n n n nu tu rv v tv ru 
        (S1) 

with t = cos() and r = isin() representing the direct and cross coupling coefficients of the optical 

pulses between the fiber rings, where  is the coupling angle characterizing the splitting ratio of the 

variable optical coupler. Then we have 
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Considering the phase modulation imposed on the short and long rings as (m) and −(m), as well as 

the loss added on the short ring with the loss rate , the equation is rewritten as 
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Another version of the equation can be expressed as  
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From Eq. (S4), the transfer matrix between adjacent steps can be obtained, i.e., 
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Let us first assume (m) = 0. The amplitudes of the Bloch modes with a specific Bloch momentum Q 

can be obtained by performing Fourier transform of the real-space amplitudes of um 
n and vm 

n , i.e., 
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Inserting Eq. (S6) into Eq. (S4), we can obtain 
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which can be rewritten as 
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The single-step time evolution operator can thus be defined as 
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By solving the eigenvalue equation 
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we can further obtain 
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which leads to 
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By denoting θ′ = θ − iγ/2, Q′ = Q+iγ/2, Eq. (S12) can be rewritten as 
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Equation (S15) gives rise to the final quasi-energy band structure 
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Then we derive the eigen modes. Equation (S10) can also be denoted as 
2
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Similarly, by denoting Q′ = Q+iγ/2, the solution of Eq. (S17) is 
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Further, by denoting sinh() = cot()sin(Q′), we have 
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As a result, the corresponding right and left eigenvectors can be expressed as 
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where  = sinh−1[cot()sin(Q+i/2)]. Normalization has been assumed to satisfy the usual orthonormal 

relations | = 1 and | = 0 for left/right eigenvectors. Note that the right eigenvectors are not 

orthogonal in the non-Hermitian system. 

The behavior of energy spectrum in complex plane is depicted in Fig. S3. The two energy bands 

are gapped66 and display a spectral phase transition at  = c with γc = 2cosh−1 [1/cos ()], where the 

system becomes gapless and an exceptional point (EP) occurs at the band touching point Q = 0. 

Interestingly, such a spectral phase transition can be described rather universally in terms of a NH 

extension of the Dirac equation where dissipation breaks Lorentz symmetry and is responsible for the 

appearance of the NH skin effect.31,44 As the phase (m) is linearly ramped in time m, the instantaneous 

quasi energies and corresponding adiabatic eigenstates are obtained by the replacement Q  Q+(m), 

so that the Bloch quasi momentum is spanned across the complex-energy gap and non-adiabatic 

transitions are possible. Clearly, the complex nature of the gap and non-orthogonality of adiabatic 

eigenstates influences the Landau-Zener (LZ) tunneling process. Figure S4 shows the overlap | 

between the two right eigenstates versus the Bloch momentum Q. For values away from the avoided 

crossing, the eigenstates are almost orthogonal, leading the system to behave in an essentially 

Hermitian way. For values around the avoided crossing, the non-Hermiticity is more apparent in the 

non-vanishing overlap of the eigenstates. The two adiabatic modes can be represented as | =U|s+ 

V|l in the diabatic basis, where |s = (1,0)T and |l = (0,1)T stand for the two bare modes in the 

short and long rings as they are uncoupled with each other (this occurs as →0). In particular, the 

mode distributions in the adiabatic basis are almost equal to that in the diabatic basis far away from 

the band gap. For this reason, the incident wave packets are always initially prepared in the adiabatic 

basis, either for the measurement of the tunneling process in diabatic basis or for the measurement of 

the tunneling process in adiabatic basis. Figure S5 illustrates the mode distributions in different bases 
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for specific values of Bloch momentum Q. At the exceptional point i.e. for Q = 0 and  = c with c = 

2cosh−1[1/cos ()], the eigenvalues coalesce and their corresponding (adiabatic) eigenvectors become 

completely parallel. The critical value of parameter  in Eq. (S20), i.e. when we approach the EP, is c 

= i/2; correspondingly, the denominator of normalization coefficient in left eigenvector, cosh(−i/2) 

vanishes. This term with zero results in the ill-defined nature of the mode coefficients at EP in adiabatic 

basis. However, we can still measure the LZ tunneling process containing EP in diabatic basis as shown 

in Fig. S6. The final occupancy in band l of diabatic basis (|cl|2), i.e. in the lossless band, turns out to 

be given by the ordinary (Hermitian) LZ formula, in spite the other band is dissipative and we cross 

an EP during the dynamics.  

 
Fig. S3. Energy spectrum in complex plane for a few increasing values of loss rate  with sin2 = 0.05. 

(a)  = 0 for Hermitian case. (b)  = 0.3 in the weak non-Hermitian regime. (c)  = c (0.46) at the 

exceptional point. (d)  = 0.48 in the strong non-Hermitian regime. 

 
Fig. S4. The non-orthogonality of the eigenstates. (a) The overlap of the eigenstates |+|−| for  = 0. 

(b-d) Same as (a) but for  = 0.1, 0.46(c), and 0.6. 



8 
 

 
Fig. S5. Mode distributions for adiabatic and diabatic bases. (a) Mode distributions for |+, |+, |s 

and |l. (b) Mode distributions with position n for state |+. (c) Mode distributions with position n for 

the state |–. (d) Mode distributions with position n for state |l and |s. 

 
Fig. S6. Measured LZ tunneling process through EP in diabatic basis. The theoretical values are 

denoted by solid curves.  
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Supplementary Note 3: Energy splitting for completely separated modes 

As mentioned in the main text, the instantaneous band occupancies can be measured by freezing the 

tunneling process at truncation step mt17. In the presence of a strong effective electric field, the input 

wave packet experiences LZ tunneling between two adjacent bands. As a result, both branches of band 

structure are occupied. However, limited by the finite separation of two split wave packets, their 

intensity profiles overlap with each other during the LZ tunneling process. For truncation step mt that 

is far from the avoided-crossing regions, we abruptly remove the effective electric field after the 

truncation step mt. Here, the effective electric field is E = /20, and the splitting parameter sin2 = 0.05. 

After that, the wave packets belonging to two different bands move to opposite directions in the n axis, 

leading to the separation of two split wave packets. By introducing the loss into the short loop, we 

realize the dissipative LZ tunneling. Similar to the Hermitian case, we abruptly remove the effective 

electric field and the loss at the same time after the truncation step mt. Then the wave packets belonging 

to two different bands with opposite group velocity evolve forward till they separate from each other. 

The removal of the loss after truncation step mt guarantees that the intensities of two wave packets 

keep equivalent during the evolution after step mt. Figures S7(a) and S7(b) displays the above beam 

splitting process for  = 0 and 0.1. One sees that the split wave packets are completely separated at step 

m = 30 in these cases. By calculating the intensities of two wave packets, we can readily obtain the 

band occupancies, as depicted in Figs. S7(c) and S7(d). 

 
Fig. S7. Schematic diagram of energy splitting. (a), (b) Measured pulse intensity evolution with mt = 

15 for  = 0 and 0.1, respectively. (c), (d) Intensity profiles of pulse trains at m = 1, 15, and 30 for  = 

0 and 0.1, respectively. The blue bars represent the intensity of pulses at each lattice site. The red solid 

lines are the corresponding fitted curves with cubic spline data interpolation. 
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Supplementary Note 4: Preparation of broad Gaussian wave packet  

In this section, we elaborate on the non-Hermitian generation of a broad Gaussian wave packet, which 

enables the mode interference mentioned in the main text. The generation process contains three steps, 

i.e., the formation, Gaussian shaping, and eigenmode selection67. Firstly, a long pulse sequence is 

obtained by using the diffraction of a single-site excitation with non-Hermitian modulation based on 

Ref. 68. Specifically, this is achieved by an alternating gain-loss scheme with gain factors Gu = exp[(–

1)m] = 1/Gv, where Gu and Gv correspond to short and long loops, respectively, and  is the gain/loss 

parameter. As shown in Figs. S8(a) and S8(b), the gain and loss change alternately along the evolution 

direction and flips at every step. By using such a non-Hermitian setting, the eigenmodes in different 

regions of Brillouin zone will experience various degrees of gains or losses. Thus, during propagation, 

the spectrum will get narrower considerably. In this way, the wave transport can change from ballistic 

to diffusive manners. In experiment, the gain and loss are introduced by changing the transmissions of 

intensity modulators (IMs) in optical fiber loops. Secondly, we also use the above gain-loss scheme, 

but the gain/loss parameter  is set as a smaller value compared to the one in the first part. By doing 

so, we can enhance the central part of the wave packet and suppress its marginal parts, leading to the 

Gaussian shaping of pulse sequence. As shown in Fig. S8(c), a broad Gaussian wave packet with a full 

width at half maximum of Δn = 15 is generated from a single pulse by utilizing the above gain-loss 

scheme. Finally, by implementing phase and intensity modulation onto the pulse trains in the short and 

long loops, we can precisely excite the eigenmode at the upper or lower band. 

 
Fig. S8. Generation of broad Gaussian wave packet. (a), (b) The gain factors in long (a) and short (b) 

loops varying with step m. (c) Simulated pulse intensity evolution. 
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Supplementary Note 5: Mode interference in long and short fiber loops 

A Bloch mode | propagating in the temporal lattice can be expressed by a superposition of upper- 

and lower-band modes  
( ) ,i m i mc e c e     

     (S21) 

where c+ and c− denote amplitude of upper- and lower-band modes at time step m, ± and |± are the 

eigenvalues and eigenvectors, and Δ is the phase difference between the two modes. Note that the 

Bloch momentum Q = 0 and  = 0 at this step. According to Eq. (S20), the eigenvectors belonging to 

the two different bands take the simple form 
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Substituting Eq. (S22) into Eq. (S21), the intensities in the short and long loops can be calculated as 
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where 
tmI and I0 is the light intensity of the time step mt and the incident time. Further calculation leads 

to 
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The above intensities can be further expressed as 
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According to the band structure  =  cos−1[cos()cos(Q+i/2)] + i/2, we have + − – = 2 when Q 

= 0 and  = 0. Then, the intensities are given by 
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From Eq. (S26), one sees that interference fringes appear both in the short and long loops. Furthermore, 
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the two interference fringes have identical period and bias, which equal to T = π/ and (|c+|2+|c–|2)/2, 

respectively. More interestingly, the two interference fringes are out-of-phase. However, in realistic 

experiment, it is very hard to generate an infinite Bloch eigenmode. 

Here, we prepare a broad Gaussian wave packet with Δn = 15 to simulate the behavior of Bloch 

eigenmode. As illustrated in Figs. S9(a) and S9(b), we can also observe clear interference fringes in 

the short and long loops by using the broad wave packet. Furthermore, the time step where the fringes 

show the constructive interference in short loop is exactly the one where the destructive interference 

emerges in long loop. To further analyze the interference fringes, the total light energies in the short 

and long loops varying with step m are shown in Figs. S9(c) and S9(d). By doing so, we can extract 

all information of interference patterns, such as contrast ratios and initial phases, which reflect the 

coefficients of two eigenmodes. 

 
Fig. S9. Interference in long and short loops. (a), (b) Simulated pulse intensity evolutions for mt = 10 

in short and long loops, respectively. (c), (d) Total light energies varying with step m in short and long 

loops. All have sin2( = 0.05, E = π/20, and  = 0.1. 
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Supplementary Note 6: Mode recovering after abrupt change of gauge potential 

Considering the evolution of the time steps from mt to mt + 1 as | = |', where | and |' are 

wavefunctions of the step after the truncation (mt+1) and the truncating time step mt. The wavefunction 

|' of the time step mt can be expanded in the eigenvectors |' =  c'+|'++c'−|'− and the eigenvectors 

|' can be obtained by Eq. (S20). Therefore, we can derive the spectral amplitudes of time step mt as 

.
c U U c

M
c V V c

 

 

 



             


     
 (S27) 

The corresponding time propagator in Q-space is deduced from Eq. (S10) 

cos
.

si
( ) sin( )

( )
( ) ( )n cos

i i

i i

e i e
Q

ei e
 
 

 

   


 
  
 

 (S28) 

where  = Q +Δ, representing the Bloch momentum at time step mt + 1 after the variation of gauge 

potential. As if Δ = E, the effective electric field keeps constant at time step mt + 1. Else if Δ = 0, 

the effective field is removed although the gauge potential keeps unchanged. For a special case Δ = 

–Q, that is,  = 0, the Bloch momentum of the modes equals to that at the crossing point, which 

suggests the group velocities of the modes should have the same directions. Under this circumstance, 

the modes belonging to distinct bands could undergo a perfect interference. 

At the time step mt + 1, the Bloch mode can also be expanded by the eigenvectors of the two 

bands | = c+|++ c−|− with c being the mode coefficients obtained in experiment and | can be 

obtained by Eq. (S20). Therefore, we can derive the spectral amplitudes of time step mt+1 as 

.
c U U c

M
c V V c

 

  

 



    
     

    
 (S29) 

With transfer matrix (Q) in Eq. (S28), the relation | = |' can be expressed as M(c+, c−)T = M′(c'+, 

c'−)T. Thus, the relation of mode coefficients corresponding to mt and mt + 1 can be obtained as (c'+, 

c'−)T = M′−1−1M (c+, c−)T, which can be further expressed as 
11

cos
.

s
( ) sin( )
(in cos) ( )

i i

i i

e i e
e e

c U U U U c
c V V V V ci

 
 

 




   
 



    

   

          
                 

 (S30) 

When applying an abrupt change of gauge potential Δ = −Q so as to  = 0, we have  

cos
.

si
( ) sin( )
( ) (c )n os

i
i

 
 


 

  
 

 (S31) 

The corresponding inverse matrix is 

1 cos
.

sin c
( ) sin(

o
)

( ) s( )i
i 

 
 


 

   
 (S32) 
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And we have  =1/ 2 1, 1 T  . Thus matrix M can take the simple form 

1 11 .
1 12

U U
M

V V


 

   
      

 (S33) 

Further, we have  

1 .
i i

i i

e e
M

e e

 

 







 
  

 
 (S34) 

Note that the matrix M' is not a unitary matrix, we utilize the left eigenvectors in Eq. (S20) to obtain 

the identity matrix 
* *

* *

ˆ ˆ 1 0
.

ˆ ˆ 0 1
U V U U

V VU V

   
   

  







  

  

         
              

   
    

 (S35) 

The matrix M'−1 can be expressed as 
1 * *

1

* *

ˆ ˆ
.

ˆ ˆ
U U U V

M
V V U V


   

   

                  
 (S36) 

Finally, we can establish the relation between the mode coefficients at adjacent time steps 
* *

* *

ˆ ˆ1 .
ˆ ˆ2

i i

i i

c U V ce e
c ce eU V

 

 







  

  

        
              

 (S37) 

As far as c are obtained by fitting the interference pattern in the experiment, we can achieve the 

coefficients c' at time step mt.  


